Next: About this document ...
Up: Resonant spatio-temporal learning in
Previous: Acknowledgments
- 1
-
M. Abeles, H. Bergman, E. Margalit, and E. Vaadia.
Spatiotemporal firing patterns in the frontal cortex of behaving
monkeys.
J. neurophys., 70(4):1629-1638, 1993.
- 2
-
S. Amari.
Characteristics of random nets of analog neuron-like elements.
IEEE Trans. Syst. Man. Cyb., SMC-2(5):643-657, 1972.
- 3
-
C.A. Barnes, M.S. Suster, J. Shen, and B.L. McNaughton.
Multistability of cognitive maps in the hippocampus of old rats.
Nature, (388):272-275, 1997.
- 4
-
E. Bienenstock and S. Geman.
Compositionality in neural networks.
In M.A. Arbib, editor, The handbook of Brain Theory and Neural
Networks, pages 223-226. MIT Press, 1995.
- 5
-
G. A. Carpenter and S. Grossberg.
A massively parallel architecture for a self-organizing neural
pattern recognition machine.
Computer vision, graphics and image processing, 37:54-115,
1987.
- 6
-
B. Cessac.
Increase in complexity in random neural networks.
Journal de Physique I, 5:409-432, 1995.
- 7
-
F. Crick.
Function of the thalamic reticular complex: the searchlight
hypothesis.
Proc. Nat. Acad. Sci USA, 81(14):4586-4590, 1984.
- 8
-
E. Daucé.
Adaptation dynamique et apprentissage dans les réseaux de
neurones récurrents aléatoires.
PhD thesis, ENSAE, 2000.
- 9
-
E. Daucé, O. Moynot, O. Pinaud, and M. Samuelides.
Mean-field theory and synchronization in random recurrent neural
networks.
Neural Processing Letters, In press.
- 10
-
E. Daucé, M. Quoy, B. Cessac, B. Doyon, and M. Samuelides.
Self-organization and dynamics reduction in recurrent networks:
stimulus presentation and learning.
Neural Networks, 11:521-533, 1998.
- 11
-
B. Doyon, B. Cessac, M. Quoy, and M. Samuelides.
Control of the transition to chaos in neural networks with random
connectivity.
Int. J. of Bif. and Chaos, 3(2):279-291, 1993.
- 12
-
J. L. Elman.
Finding structure in time.
Cognitive Science, (14):179-211, 1990.
- 13
-
P. Gaussier, C. Joulain, J.P. Banquet, S. Leprêtre, and A. Revel.
The visual homing problem: an example of robotics/biology cross
fertilization.
Robotics and Autonomous Systems, 30:155-180, 2000.
- 14
-
P. Gaussier and S. Zrehen.
Perac: A neural architecture to control artificial animals.
Robotics and Autonomous Systems, 16(2-4):291-320, 1995.
- 15
-
W. Gerstner, R. Ritz, and J.L. Van Hemmen.
A biologically motivated and analytically soluble model of collective
oscillations in the cortex.
Biol. Cybern., 68:363-374, 1993.
- 16
-
C.M. Gray and W. Singer.
Simulus-dependent neuronal oscillations in the cat visual cortex
area.
In Neuroscience Suppl., volume 1301P. 2nd IRBO Congress, 1987.
- 17
-
M. Hermann, J. Hertz, and A. Prugel-Bennett.
Analysis of synfire chains.
Network, 63(3):403-414, 1995.
- 18
-
J. Hertz and A. Prugel-Bennett.
Learning synfire chains: turning noise into signal.
Int. J. Neural Systems, 7:445-450, 1996.
- 19
-
A. Herz, B. Sulzer, R. Kuhn, and J. L. van Hemmen.
Hebbian learning reconsidered: Representation of static and dynamic
objects in associative neural nets.
Biol. Cybern., 60:457-467, 1989.
- 20
-
J.J. Hopfield.
Neural networks and physical systems with emergent collective
computational abilities.
Proc. Nat. Acad. Sci., 79:2554-2558, 1982.
- 21
-
J.-M. Hupé, A.C. James, B.R. Payne, S.G. Lomber, P. Girard, and J. Bullier.
Cortical feedback improves discrimination between figure and
background by v1, v2 and v3 neurons.
Nature, 394:784-787, 1998.
- 22
-
Y. Kuniyoshi and L. Berthouze.
Neural learning of embodied interaction dynamics.
Neural Networks, 11:1259-1276, 1998.
- 23
-
K. Mac Leod and G. Laurent.
Distinct mechanisms for synchronization and temporal patterning of
odor-encoding cell assemblies.
Science, 274:976-979, 1996.
- 24
-
C. Meunier and J.-P. Nadal.
Sparsely coded neural networks.
In M.A. Arbib, editor, The handbook of Brain Theory and Neural
Networks, pages 899-901. MIT Press, 1995.
- 25
-
O. Moynot and M. Samuelides.
Large deviations and mean-field theory for asymmetric random
recurrent neural networks.
PTRF, In press.
- 26
-
A. Revel, P. Gaussier, and J.P. Banquet.
Taking inspiration from the hippocampus can help solving robotics
problems.
In European Symposium on Artificial Neural Networks, Bruges,
Belgium, Avril 1999. IEEE.
- 27
-
E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, and F. J.
Varela.
Perception's shadow: long-distance synchronization of human brain
activity.
Nature, 397:430-433, 1999.
- 28
-
W. D. Ross, S. Grossberg, and E Mingolla.
Visual cortical mechanisms of perceptual grouping: Interacting
layers, networks, columns, and maps.
Neural Networks, (13):571-588, 2000.
- 29
-
T.B. Schillen and P. König.
Stimulus dependent assembly formation of oscillatory responses: Ii.
desynchronization.
Neural Computation, 3:167-178, 1991.
- 30
-
G. Schöner, M. Dose, and C. Engels.
Dynamics of behavior: theory and applications for autonomous robot
architectures.
Robotics and Autonomous System, 16(2-4):213-245, December
1995.
- 31
-
T. J. Sejnowski.
Strong covariance with nonlinearly interacting neurons.
Journal of Mathematical biology, 4:303-321, 1977.
- 32
-
C.A. Skarda and W.J. Freeman.
How brains make chaos in order to make sense of the world.
Behav. Brain Sci., 10:161-195, 1987.
- 33
-
H. Sompolinsky, A. Crisanti, and H.J. Sommers.
Chaos in random neural networks.
Phys. Rev. Lett., 61:259-262, 1988.
- 34
-
J. Tani and S. Nolfi.
Learning to perceive the world as articulated: an approach for
hierarchical learning in sensory-motor systems.
In R. Pfeifer, B. Blumberg, J.A Meyer, and S.W. Wilson, editors, From Animals to Animats: Simulation of Adaptive Behavior SAB'98, pages
270-279. MIT Press, 1998.
- 35
-
S. J. Thorpe, D. Fize, and C. Marlot.
Speed of processing in the human visual system.
Nature, 381:520-522, 1996.
- 36
-
F. Varela, E. Thompson, and E. Rosch.
The Embodied Mind.
MIT Press, 1991.
- 37
-
C. Von der Malsburg.
A neural cocktail-party processor.
Biol. Cybern., 54:29-40, 1986.
- 38
-
Ronald J. Williams and David Zipser.
A learning algorithm for continually running recurrent neural
networks.
Neural Computation, 1(2):270-280, 1989.
Dauce Emmanuel
2003-04-08