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Abstract. This paper is a presentation of neuronal control systems in the terms of the dynamical systems
theory, where (1) the controller and its surrounding environment are seen as two co-dependent controlled
dynamical systems (2) the behavioral transitions that take place under adaptation processes are analyzed
in terms of phase-transitions. We present in the second section a generic method for the construction of
multi-population random recurrent neural networks. The third section gives an overview of the various
phase transitions that take place under an external forcing signal, or under internal parametric changes.
The section 4 presents some applications in the domain of sequence identi�cation and active perception
modeling. The section 5 presents some applications in the domain of closed-loop control systems and
reinforcement learning.
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Introduction

The previous papers have mainly described the proper-
ties of the intrinsic interactions of big sets of neurons.
Those neuronal sets have been described in the terms of
the dynamical systems theory, following the pioneer work
of Grossberg [1], Amari [2] and Hop�eld [3].

Most of the recurrent neural networks models fall in
the category of dissipative systems1. The qualitative prop-
erties of dissipative dynamical systems can be summarized
the following way:

� The state space of a dynamical system is divided into
several basins of attraction into which every trajectory
converges toward a unique attractor.

� The nature and structure of these attractors can vary
strongly from one system to another, and from one at-
traction basin to another. The most simple attractors
are �xed points. The most complex attractors that we
shall consider are called "strange attractors". They are
associated with chaotic dynamics.

1 See the appendix of paper 1 for the de�nition and proper-
ties of dissipative systems

� The shape and nature of the attraction basins can vary
under parametric changes, which are often supposed
adiabatic (i.e. slow according to the state update).
Phase transitions occur when the topological charac-
teristics of trajectories undergo a sudden change.

A dynamical system can model phenomena taking place at
various temporal scales. First, it determines a short term
causality between the successive states of the system. Sec-
ond, the evolving topology of its basins of attraction under
parametric changes determines the long term changes in
the organization of the dynamics.

So, the dynamical description gives in �rst place a set
of tools in order to analyze the versatile properties of real
neuronal assemblies. It has long been suggested, for in-
stance, that an attractor basin encodes a memory of a
particular item [3], where the "recall" (or recognition) cor-
responds to a "resonance" between a particular sensory
or sensori-motor con�guration and a recurrent neural net-
work [4,5] (see also paper 1, part 6.6).

In the �eld of computer sciences and applied mathe-
matics, recurrent neural networks are proved to be power-
ful auto-associators. In other terms, they have been proved
to robustly reconstruct some given prototypical patterns
out of piecewise or noisy input patterns. The counter-
part is a rather low capacity which is found to linearly
increase with the size N (i.e. to increase as the square
root of the number of parameters). Recurrent memories
are however much more powerful than mere �xed-point
auto-associators. They are indeed found to display non-
stationary and possibly complex self-sustained dynamics
as soon as the classical constraint of weights symmetry [6]
is released. This allows in particular to store and retrieve
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multiple spatio-temporal patterns in the form of limit cy-
cles of the dynamics [7�9], which is, to our opinion, the
prominent property of recurrent memories.

In a biological context, this property is ubiquous through-
out the whole nervous system. It can be noticed for in-
stance that primitive and vital controls such as mastica-
tion and locomotion rely on small and versatile recurrent
sets of neurons called Central Pattern Generators (CPG)
[10,11]. The recurrent structure of hippocampal CA3 net-
work is suggested to take part in the recall of sequences
of events [12,13]. More broadly, the connections between
cortical areas are most of the time found to be recipro-
cal, and large scale mechanisms of synchrony locking have
been suggested to take part in perception processes [14].

So, if recurrent dynamical neural networks clearly ap-
pear as prototypical models of short and long term mem-
ory, they are also suggested to give clues in some as-
pects of perception and action production. As they tend to
produce multiple self-sustained spatio-temporal patterns
of activation, they seem indeed particularly suitable for
the production and stabilization of sensori-motor patterns
[15]. This point is the one we will try to enhance in the
present paper.

The �rst section gives an overview of the available dy-
namical systems tools and methods in motor control. In
particular, we show how the neuronal models of agents
(or robotic devices) take advantage in being embedded in
more generic models of interaction processes. The second
section gives some insights into neuronal modeling and
network design. We show how to build modular struc-
tures with random weights distributions out of minimal
parameter sets. The choice of the spatial and temporal
resolution thus �xes the e�ective network realization. The
third section presents some aspects of the bifurcations and
transitions taking place in various models of recurrent neu-
ral networks. We distinguish in particular two families of
transitions, the �rst being input-driven transitions, the
second being parameter-driven transitions (in the partic-
ular case of Hebbian learning). The fourth section gives
an example of on-line spatio-temporal sequence retrieval.
The retrieval property relies on the resonance between a
sensory layer and a recurrent memory. Another example
taking place in the framework of robotic control is given.
The �fth section gives a prototypical example of motor
control achievement with the use of simple Hebbian rein-
forcements in a recurrent network of binary neurons.

1 Interacting systems and learning

Before going further in neuronal modeling, we draw in this
section some basic formal settings for the de�nition of a
global model of interaction.

1.1 Modeling the two sides of an interaction process

A control system is a model of interactions between a
model of controller (or agent) and a model of the envi-
ronment. An agent (man, animal or robot) owns a ner-
vous system or any kind of fast internal process which

eventually sends some command signals toward e�ectors
(muscles, arms, wheels...). The body of the agent is at
the same time immersed in an environment with its own
constraints and dynamics. The agent's body owns sen-
sors which translate some of the external state variables
into various signals which take part in the (fast) internal
process. The variety of the sensors implies that the ex-
ternal world is perceived through di�erent sensory modes
(touch, smell, vision...). The environment evolves under
the actions of the agent, and those actions are updated
according to the sensory �ow.

Fig. 1.1. Agent/Environment interaction

In the most general framework (see �gure 1.1), we have
to consider at the same time two domains of description.
Those domains are separated by the agent's body, where
the skin and sensory organs draw the "frontier" between
the "inside" and the "outside".

� The �rst domain of description corresponds to the phys-
ical world, including the agent's body/actuators and
everything surrounding the agent.

� The second domain of description is the agent internal
space, i.e. the agent's body seen "from the inside". It
can be possibly modeled, for instance, as a dynamic
neural network, or a set of expert systems, or even an
electric circuit. This system is under the in�uence of
various sensory inputs.

The agent's and environment evolutions are co-dependent,
i.e. belong to the same process, whose evolution originates
from each side in�uence. A speci�c dynamical system can
be associated to the two domains, each system giving a
partial picture of the global ongoing interaction2. The
outer system includes a series of processes taking place in

2 In that framework, we thus have "two systems in one", and
those two subsystems are in a mirror relationship, so that the
"perceptions" of one system are the "actions" of the other one,
and reciprocally, even if it is of course a bit unusual to think
of the environment as "perceiving" the agent, and "acting on"
or controlling the agent.
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the physical world, including the agent actions and move-
ments. The inner system includes a series of processes tak-
ing place inside the agent's "brain".

The outer system does not include the agent's "pur-
poses". Reciprocally, the inner system does not include
what is not perceivable by the agent. Those unpredictable
parts, taking place on one side or the other, will be called
"hidden variables" or "hidden processes".

Such systems can be described either in a determinisic
or, more commonly, in a stochastic fashion.

Deterministic interaction models For the seek of sim-
plicity, we start with a deterministic presentation of the
considered interaction system. Our formal presentation re-
mains at a schematic level: we implicitly suppose that
our interaction system is fully determined. The interac-
tion system is thus a single dynamical system which has
been split, for clarity reasons, into an environment and
an agent, for which we suppose we have a precise state
description. Without loss of generality, we use here a dis-
crete time description. An interaction system can thus be
described by the set of deterministic equations:

uout(t) = kout(xin(t))
xin(t) = fin (xin(t− 1), uin(t− 1))
uin(t) = kin(xout(t))
xout(t) = fout (xout(t− 1), uout(t− 1))

(1.1)

Where Xin is the internal state space, Uin is the in-
ternal input state space, fin : Xin × Uin → Xin is the in-
ternal transition function, xin ∈ Xin is the internal state,
uin ∈ Uin is the internal command (the observation vec-
tor), Xout is the external state space, Uout is the external
input state space, fout : Xout × Uout → Xout is the exter-
nal transition function, xout ∈ Xout is the external state,
uout ∈ Uout is the external command,

� The mapping kout : Xin → Uout represents the trans-
formation of the agent's state space to the commands
space, i.e. the various forces which activate the agent's
body. The outer process is thus dependent on the in-
ternal state, through the agent's movements uout(t).

� Conversely, the mapping kin : Xout → Uin represents
a transformation that maps the external space to the
agent body-centered space, basically corresponding to
the signal sent to the agent by its various sensors. The
agent is dependent on the external state, through its
observations uin(t).

A simple example We illustrate the framework of in-
teracting systems (1.1) with an idealized situation of a
Khepera-type robotic agent interacting with a �at envi-
ronment. This example is inspired by [16]. This agent is
represented on �gure 1.3.

The interaction model we take in consideration uses
rough simpli�cations of both robot and environment mod-
els. Let us considerate an agent A living in a 2 dimensional
space, which also contains a target S.

Fig. 1.2. Functional diagram of an interaction system (the
dashed line represents the frontier between the internal pro-
cesses and the external processes, i.e. the "skin".).

Fig. 1.3.Model of a Khepera-type robotic agent in a simpli�ed
environment composed of one target towards which the agent
tends to orientate. This situation is externally de�ned by 5
state variables : xA, yA, xS, yS, φ. Variable ψ represents the rel-
ative target position (i.e. "observation"), according to the �ve
previous variables. Variable v is a wheel command allowing the
agent to rotate.

� The agent is externally described by 3 degrees of free-
dom (DOF), with two cartesian coordinates xA and
yA, and its current orientation φ. Its input is here
composed by a wheel command v acting on the agent
angular velocity. The target has 2 DOF, and can be
described by its two coordinates xS and yS. The outer
state space Xout is consequently composed of 5 state
variables so that xout = (xA, yA, φ, xS, yS), and the
command state space is uout = v.

� The inner space is composed by a single variable ψ
(which corresponds to the current inner estimate of
the target position). The current observation is ψ∗ (vi-
sual signal/target perceived position). The inner state
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space Xin is composed of 1 state variable so that xin =
ψ, and the observation space is mono-dimensional so
that uin = ψ∗.

What we usually consider as the "objective" or physi-
cal space constitutes the external space. It corresponds to
the Cartesian space, and needs an arbitrary reference to
be de�ned, which is the origin of x and y axes. On the con-
trary, the inner space is body-centered, so that its "origin"
is de�ned through the con�guration of the agent's body. In
this case, the origin of the visual �eld is simply the center
of the �eld, according to the visual sensors position.

Two mappings can now be de�ned. They constitute the
interfaces from one space to the other. The �rst mapping
is kin : Xout → Uin with

ψ∗(t) = kin(xout) = φ− arctan
(
yS − yA
xS − xA

)
This mapping is an idealization of the transformation done
by the sensors. The second mapping kout : Xin → Uout is

s(t) = kout(xin) = − sin(ψ(t)) (1.2)

which translates the inner state in a certain command
operating in the direction of the current estimate of the
target position, according to an homeostatic regulation
principle.

At last, we can describe the two dynamics :

� The external dynamics is here very simple. This ex-
ample only describes the process by which an agent
orientates toward a target. The environment dynam-
ics is here reduced to the agent's body which has only
one degree of freedom: φ , the absolute angular posi-
tion. The environment dynamics is thus updated this
way :

τout
dφ

dt
= s(t)

where τout is the external time constant.
� The inner dynamics gives the current estimate of the

target position. Once again, we choose for this partic-
ular example a simple update :

τin
dψ

dt
= ψ∗(t)− ψ(t)

whose �xed point is ψ(t) and parameter τin is the in-
ternal time constant. In presence of several targets, say
ψ1 and ψ2, a more elaborate transition function could
be imagined, in order to allow a selection of one target
among the others:

τin

dψ

dt
= (ψ∗1 − ψ) exp

0@− (ψ∗1 − ψ)2

2

1A + (ψ∗2 − ψ) exp

0@− (ψ∗2 − ψ)2

2

1A

see [16]. In a more realistic stochastic model (see next
paragraph), a Kalman �lter could also be used, giving
estimates of ψ∗1 and ψ∗2 instead of the straightforward
target perception.

The external relaxation parameter τout should be adapted
in a realistic model to the response characteristics/transfer

function of the robot's wheels. The internal relaxation pa-
rameter τin is supposed to allow for a fast adaptation to
the input change, for the response of the system to re-
liably represent the target position. It is thus implicitly
supposed that τin << τout, which corresponds to the idea
that the internal (neuronal) process is a fast process, and
the external (body/environment) process is a slow one.

Stochastic interaction models In a more realistic frame-
work, one has to consider various random factors which
represent the non-deterministic/unknown part of our model.
In our formal setting, this means that our system should
be updated according to several random processes : vin(t),
win(t), vout(t), and wout(t), for which the probability law
may be known, so that

uout(t) = kout(xin(t), vout(t))
xin(t) = fin(xin(t− 1), uin(t− 1), win(t))
uin(t) = kin(xout(t), vin(t))
xout(t) = fout(xout(t− 1), uout(t− 1), wout(t))

where vin and vout correspond to observation noises and
win and wout correspond to process noises.

In real world problems, it is often di�cult to obtain
the global model, so that the complexity of the domain de-
scription is often reduced to one side or the other. In order
to design proper controllers, assumptions are often made
on the stationarity of the environment for instance (Par-
tially Observed Markov Decision Processes framework). In
the case of non-stationnary environments, an estimation of
the external states can be processed out of adaptive �lters,
under the assumption of a full description of the measure
process (Kalman �lters and extended Kalman �lters). For
more details, the reader will refer to [17,18].

1.2 Knowledge acquisition and movement production

The mixed process of equation (1.1) is moreover supposed
to evolve : assuming that (1.1) is dissipative, the basins of
attraction may undergo structural transformations. Those
structural changes correspond to a slow construction pro-
cess through which the agent gets new skills (and new
"knowledge") (the environment may also undergo struc-
tural changes), and are generally called learning processes.

In the vocabulary of dynamical systems, skill acqui-
sition is assimilable to uncertainty reduction, i.e. to an
increase of the predictability of the system's trajectories
3. Up to this point, two main approaches can be distin-
guished:

� For the representationalist (or realistic) school [19],
skill acquisition means to reduce the uncertainty on
�what is really going on out there�, i.e. to manage to
produce motor patterns which are the most relevant
in given sensory situations. This approach preaches for
the use of internal models of the environment.

3 The process of variability reduction possibly takes place
together with the reduction of a cost function, which is out of
the scope of the dynamical systems theory.
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� For the non-representationalist (or constructivist) school
[20�22], skill acquisition means to reduce the uncer-
tainty on �what's coming next�, i.e to globally produce
more predictable interaction patterns. Under this ap-
proach, the sensory and internal processes are subor-
dinate to the production of regular and persistent cou-
plings between the body and some a�ordant partners
from the environment.

The balance between the predictable part and the un-
predictable part of action production is also found within
the learning process itself. In the process of procedural
knowledge and skill acquisition, a subtle balance between
exploration (progressism) and exploitation (conservatism)
has to be maintained. This question relates to the clas-
sical stability/plasticity trade-o� [4]. The process has to
switch opportunistically between exploration, when the
action mainly comes from the agent's internal dynamics,
and exploitation, when the actions are mainly driven by
the environment.

1.2.1 Supervised methods

Using a supervised method means to give the agent a
model for its actions. The aim is thus to reduce the error
between the spontaneous motor response and the desired
one. This question arises, of course, when one knows the
suitable control, but doesn't know the method or param-
eters for designing the desired controller. We must thus
have a �prescriptive� model of this kind:

u∗(t+ 1) = f∗(u(t))

which represents the desired future perception u∗(t + 1)
following the current perception u(t).

In this framework, we have to consider an internal
identi�cation process (i.e. internal model) which is sup-
posed to anticipate the future perception:

ũ(t) = fI(x(t− 1),u(t− 1))

where x represents the last "action". Such an identi�er
fI can be determined using classical non-linear regression
methods, for instance backpropagation methods.

Two methods can be distinguished for parametric learn-
ing: on-line learning and batch learning. On-line learning
means a continuous change of the system parameters ac-
cording to every incoming signals. Batch learning means
to dissociate perception-action processes from adaptation
processes, so that parameter changes do not take e�ect
immediately, but arise by steps, at discrete moments.

The main problem is to determine a certain controller
fC :

x(t) = fC(x(t− 1),u(t− 1))

such that x will correspond to the proper suitable action.
The global update equation of the controller is:x(t) = fC(x(t− 1),u(t− 1))

ũ(t) = fI(u(t− 1))
u∗(t) = f∗(u(t− 1))

Fig. 1.4. Functional diagram (solid lines) and backpropa-
gation path (dashed line) for the supervised motor learning
framework.

Its functional diagram is given on �gure 1.4.
Determining fC typically corresponds to an "inverse

modeling" problem : knowing the suitable perception u∗(t),
one need to state the suitable action x∗(t−1) which could
be the cause of this perception. This estimate needs fI
to be invertible. Even if fI is invertible, there is a great
risk that it may be badly conditioned, so that a strong
error on action selection may result from a small identi�-
cation error. Backpropagation o�ers in this case a suitable
method for the design of such supervised controller (see
�gure 1.4). Knowing f∗, after fI has been identi�ed, the
error term e(t + 1) = u∗(t + 1) − ũ(t + 1) is backprop-
agated in order to obtain an error term ex(t), without
changing the weights inside identi�er fI. This �rst back-
propagation corresponds to the use of the inverse model,
i.e. x∗(t) ' x(t)+ex(t). This error term is then backprop-
agated into module fC for the regression to converge on
the desired controller.

The error ex(t) represents the control correction to
be done. It is actually determined at time t + 1, after
a measure on u(t). If the correction is made on-line, fC
may be modi�ed so that x(t+ 1) will include a correction
of the previous error (but the system is not aware of the
current error).

1.2.2 reinforcement methods

Reinforcement methods must be used when the agent de-
signer doesn't even know exactly what his agent is sup-
posed to do in the interaction process. The reinforcement
process thus relies on a series of rewards and punishments,
that occasionally occur during the interaction process.
This method explicitly needs:

� an exploration process, for the agent to generate its
own actions;

� a selection process, for the agent to maximize the re-
wards.
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Given a certain agent

xin(t) = f(xin(t− 1),uin(t− 1))

the problems is thus to �nd a function f∗ which optimizes
the rewards.

The classical reinforcement learning techniques are deriva-
tives of the dynamics programming approach, and divide
into TD-learning methods [23,24] and Q-learning methods
[25].

A reinforcement learning problem is classically de�ned
by a space with its states xout, with the observation uin =
xout in the fully observable case. The external states are
valuated according to a value function xin(t) = V (uin(t)).
This value function is an estimate of the sum of the future
rewards E(

∑∞
k=t r(k)). In the linear case4: V (uin) = Juin,

the learning of the value function relies on the temporal
di�erences rule TD(0) [12], i.e.

∆J(t) = α(r(t) + xin(t)− xin(t− 1))× uin(t− 1) (1.3)

where r(t) is the current reward and uin(t− 1) is the last
input. After several experiments, this rule converges to-
ward a prediction of the sum of the next expected rewards
according to the current perception uin. In the TD(λ)
scheme, a trace of the previous inputs is memorized, i.e

Tin(t) = uin(t) + λTin(t− 1) (1.4)

and the update rule is now

∆J(t) = α(r(t) + xin(t)− xin(t− 1))× Tin(t− 1) (1.5)

Under the classical TD approach [23], an "actor" process
is responsible for the choice of a relevant action. The tun-
ing of the action is thus under the control of the "critic"
process, which owns the estimation of the value function.

In the Q-learning scheme [25], the external states are
valuated according to a transition value function xin(t) =
Q(uin(t−1),uout(t)). If we de�ne u(t) = (uin(t−1),uout(t)),
and consider the simple linear case Q(u) = Ju,

∆J(t) = α(r(t) + xin(t)− xin(t− 1))× u(t− 1) (1.6)

and the politics f elects the current action uout according
to the best expectation on the future valuations

uout(t) = fin(uin(t− 1))
= argmaxvQ(uin,v) (1.7)

The convergence toward a relevant Q function often need
an exhaustive exploration of the environment. This ex-
ploration is often rooted on a random action generation

4 In a more general case, V (.) can be considered as a di�er-
entiable mapping, for instance a multi-layer perceptron, with
weight parameters J. In the case a discount factor γ takes
place, the weight update is of the form ∆J(t) = α(r(t) +
xin(t) − γxin(t − 1))∇J(xin(t)) × uin(t − 1). The linear for-
mula has been given for simplicity, but the reader can easily
generalize to the non-linear case and to the use of classical
backpropagation learning techniques.

process. After a while, the system can be more con�dent
on its own estimation and choose its action according to
equation (1.7).

In this approach, the estimation of the value function
(seen as an inner model) and the action production are
independent processes.

In the reinforcement learning framework, devoting a
module for the simulation of an inner model is not always
necessary. In that case, the state x may not �t with an
estimate of the current perception, and the inner process
f may not mimic any external process. Such �simpli�ed�
versions of the reinforcement learning paradigm fall in the
category of direct "policy learning" methods [26,27]. The
question is not to obtain the best model, but to obtain the
most proper action. If the dynamics developed by f is rich
enough, the problem is to select the proper action among
a series of self generated arbitrary actions. In this kind of
system, without any knowledge on the environmental pro-
cesses, the selection of transition function f∗ is obtained
by "trial and errors".

This approach is of course highly dependent on:

� the choice of the action generation process. Most of
the known methods rely on a random generator, so
that reinforcement fall into the �eld of stochastic opti-
mization methods. We will try to illustrate at the end
of this paper that one could also use chaotic dynamics
as a generative process, for its versatility and adaptiv-
ity may allow a large scope of exploration, with simple
and biologically founded methods for stabilizing the
suitable interactions;

� the nature, dimension and complexity of the agent's
environment.

2 Neuronal modeling

We now present in this section a series of methodological
clues for the construction and simulation of large sets of
interacting neurons. In continuity with the previous sec-
tion, we suppose that the considered networks are embed-
ded in a control framework, where u, represent the current
observation and x represents the current state.

2.1 Neuron models

In this paper, we only consider simple neuronal models in
order to focus on the collective behaviors rather than on
the individuals.

In the following, we will suppose that the spike emis-
sions are bounded to take place on a discrete temporal
scale (whose unit is of the order of the temporal resolu-
tion T ). We will show how such model may realize for in-
stance an implementation of more classical integrate and
�re models [28]. For simplicity, we use a virtual temporal
unit so that the elementary temporal step T is noted 1.

Let us suppose we have a population of N neurons in
our system. The state of neuron i is given by its membrane
potential Vi. When Vi reaches the threshold θ, a spike is
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emitted (the threshold is supposed positive). That spike
emission is stored in variable Si whose value is 1 when a
spike is emitted, and 0 elsewhere. The activation dynamics
of neuron i is thus formally

Si(t) = H(Vi(t)− θ) (2.1)

where H is the Heaviside function, which is equal to 1
when Vi > θ, and 0 elsewhere (see also paper 2, equation
1).

The calculation of Vi gives the main features of the
neuronal model :

� The neuron may own a memory of its own past poten-
tial (leaky integrator).

� It may own a refractory period, i.e. a resting period
after spike emission.

� The transmission times may be explicitly encoded be-
tween every neuron, with a discrete positive value (those
transmission times may correspond to the sum of an
axonal delay and PSP transmission delay through the
dendrites).

2.1.1 McCulloch and Pitts model

Let us look at a simple model, the McCulloch and Pitts
model. It relies on several sets of parameters. First of all,
the interaction matrix J, of size N ×N , de�nes the inter-
actions between neurons (see paper 1). This matrix can
be sparse or full. More generally, that matrix de�nes the
pattern of connectivity, giving the global organization of
the system (layers, full recurrence, columns, symmetric
or non-symmetric connexions, etc...). The second series of
parameters is the thresholds vector θ, of size N , giving
the local sensitivity of the neurons. At last, every neuron
is submitted to an external signal u which is added to the
neuron potential. The update of such a system is then{

V(t) = JS(t− 1) + u(t− 1)
S(t) = H (V(t)− θ) (2.2)

2.1.2 Integrate and �re model

Integrate and �re models allow to precisely model the tim-
ing of the spikes and the refractory periods. It is based on
a leaky integrator model which maintains a memory of its
last potentials, according to an exponential decay scheme
(with continuous time t)

dV

dt
= −V (t)

κ
+ I(t) (2.3)

where I(t) is the global input and κ is the time constant of
the neuron. The classical expression of the Integrate and
Fire neuron update is

dVi

dt
= −Vi(t)

κ
+

N∑
j=1

Jij

∑
f

δ(t− T
(f)
j − τ) + u(t) (2.4)

where δ is the indicator function and T
(f)
j is the time of

the f th spike of the pre-synaptic neuron j and τ is the
axonal transmission delay.

With discrete-time Euler numerical integration scheme,
one can de�ne a decay parameter γ = 1 − T/κ, where T
is the sampling resolution. Note that γ = 0 means that
the sampling is of the order of κ, so that the local mem-
ory e�ects are not modelled. We now have (in matricial
notation) :{

V(t) = γV(t− 1) + JS(t− τ̃) + u(t− 1)
S(t) = H (V(t)− θ) (2.5)

where τ̃ = b τ
T c

At last, several re�nement should be added to obtain
the classical integrate and �re model, in particular the in-
stant resetting of V after spike emission and the refractory
period r with r̃ = b r

T c, i.e. :{
V(t) = γV(t− 1)δ(S(t− 1)) + JS(t− τ̃) + u(t− 1)
S(t) = H (V(t)− θ) δ

(∑r̃
k=1 S(t− k)

)
(2.6)

Remark : if we set the typical neuronal time constant
to κ = 10 ms, the axonal delay τ = 10 ms and the refrac-
tory period r = 2 ms, the choice of the sampling resolution
T = 10 ms implements a McCulloch and Pitts model!

2.1.3 Firing rate model

The �ring rate models (i.e. models with continuous acti-
vation) are at the opposite side in terms of time precision.
The output xi(t) of a neuron represents the spike �ring
rate within a certain time window. For the seek of clarity,
the �ring rate is set to take place within interval [0, 1]. A
typical activation function is f(V, θ, g) = 1+tanh(g×(V−θ))

2
where V is the vector of membrane potential, θ is the
threshold and g is the "gain" of the activation function.
This gives the network update,

x(t) = f(Jx(t− 1) + u(t− 1), θ, g) (2.7)

In biological modeling each of the given models may
correspond to a particular resolution, i.e.

Model �ring rate McCulloch and Pitts Integrate and Fire

T 100 ms 10 ms 1ms

2.1.4 Various delays

In the two following subsections, we use γ = 0, and thus
use a McCulloch and Pitts model, but the translation to
the integrate and �re model is straightforward according
to the previous settings (in other words, the resolution T
is set to 10 ms).

The use of transmission delays in neuronal process-
ing is traditionally associated to the problem of temporal
sequences learning within recurrent dynamical networks.
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It has been shown for instance that Hebbian learning of
temporal patterns remains e�cient within a system with
a broad range of delays [29]. The important point is that
the non-speci�city of the delay scattering is not a draw-
back for learning sequences with long term dependencies.
On the contrary, a simple Hebbian mechanism allows to
select the appropriate delayed line for the learning of a
speci�c temporal dependency.

Introducing non-homogeneous delays means to intro-
duce a new series of parameters, namely the matrix of
positive integer delays T = (τij)i,j=1..N . The update of
the system is now given by :

∀t ≥ 1,∀i ∈ {1, .., N}{
Vi(t) =

∑N
j=1 JijSj(t− τij) + ui(t− 1)

Si(t) = H (Vi(t)− θi)
(2.8)

The delay repartition may rely on physiological stud-
ies. If we suppose for instance that the mean delay is of
the order of 10 ms, the expectancy of the τij 's should be
of the order of 10/T .

2.1.5 Several populations

A network can be de�ned as a pool of P interacting popu-
lations of neurons, of respective sizes N (1), ..., N (P ), where

the global number of neurons is N =
∑P

p=1N
(p). The

synaptic weights from population q towards population p
are stored in a matrix J(pq) of size N (p)×N (q). The state
vector of population p at time t is S(p)(t), of size N (p).

The initial distribution of spikes S
(p)
i (0) is set according

to a random draw in {0, 1}.
At each time step t ≥ 1, ∀(p, q) ∈ {1, .., P}2, ∀i ∈

{1, ..., N (p)},

h
(pq)
i (t) =

N(q)∑
j=1

J
(pq)
ij S

(q)
j (t− τ

(pq)
ij ) (2.9)

is the local �eld of population q towards neuron i of pop-

ulation p, and τ
(pq)
ij is the transmission delay from neuron

j to neuron i.
We also consider input signals u(p) = {u(p)(t)}t=1..+∞,

where u(p)(t) is a N (p) dimensional input vector at time t
on population p. The input u(p)(t) acts like a bias on each
neuron5. Then, the global equation of the dynamics is :

∀t ≥ 1,∀p ∈ {1, ..., P},∀i ∈ {1, .., N (p)}

S
(p)
i (t) = H

(
u

(p)
i (t− 1) +

P∑
q=1

h
(pq)
i (t)− θ(p)

)
(2.10)

5 On the contrary to Hop�eld system [3], the input is not

supposed to correspond to the initial state x
(p)
i (0) of the net-

work.

2.2 Learning rules

In neuronal modeling, learning means "weight adapta-
tion". The neuron synapses are modulated by the char-
acteristics of the signals arriving at the synaptic inter-
face, according to Hebb's principle [30]. The basic Hebbian
rule states that a synapse is reinforced when the arrival
of a pre-synaptic signal repeatedly coincides with post-
synaptic spike emission. The emission of a post-synaptic
spike after pre-synaptic �ring is thus facilitated.

The Hebb's de�nition being rather vague, numerous
realizations of the Hebb's rule have been proposed.

A good Hebbian learning rule is in �rst place a rule
which is:

� local : the rule must rely on signals that are available
in the vicinity of the neurons.

� su�ciently plausible in biological terms, i.e. still mea-
sured and/or realizable at low cost at the level of the
neurons.

The �rst and most widely admitted implementation of
the Hebb's rule is the direct product of pre-synaptic and
post-synaptic activity [1] (see also paper 1, part 6.5):

∆Jij(t+ 1) =
α

N
Si(t)× Sj(t− τij) (2.11)

where α is the learning parameter, scaled with the num-
ber of a�erent links N . We call it "order 0" Hebb rule
since it only takes into account the instantaneous values
of the neurons action potentials. In the particular case
where the Si's belong to {−1, 1} (bipolar neurons), which
is of course unrealistic, the Hebb's rule is said to be bal-
anced as the probability of synaptic potentiation is equal
to the probability of depression. In that case, the rule can
been interpreted as an instantaneous measure of correla-
tion [3]. In the standard binary case (Si ∈ {0, 1}), the rule
is notably unbalanced since only synaptic potentiation is
allowed. The weights thus tend to diverge for long time,
even if some bounding factor may be added to the learning
mechanism in order to avoid too strong weight drift.

The weights may for instance be normalized at each
learning step with the following synaptic scaling mecha-
nism [1] :

Jij(t+1) = Jij(t)+∆Jij(t+1)−
∑N

k=1∆Jik(t+ 1)
N

(2.12)

under which the simple Hebb's rule performs contrast en-
hancement, i.e. favors the current subset of active neurons
and leaves the inactive synapses disappear. In general, the
order 0 rules only take into account the current neuron
activity and thus tend to reinforce the neurons whose ac-
tivity is strong and to weaken the neurons whose activity
is weak, giving rise to a contrast enhancement e�ect 6. In
that case, the learning process will reinforce the order 0

6 Also known as the "Matthew e�ect : "For unto every one
that hath shall be given, and he shall have abundance: but from
him that hath not shall be taken away even that which he hath"
- Mat 25:29 -.
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characteristics of the neurons dynamics (their mean acti-
vation).

It can be noticed that the synaptic scaling mechanism
is considered as biologically plausible [31].

In the framework of dynamical neural networks, it can
be interesting however to take into account some di�er-
ential aspects of the neuronal activity. It is known, ac-
tually, that the contrast within the individual activity
may be more signi�cant than its mere absolute value. Un-
der that hypothesis, the di�erence in neuronal activity
Si(t)− Si(t− 1) may be taken into account in some part
of the learning rule. The most straightforward proposal is
the following (that we call the conjugate di�erence rule):

∆Jij(t+1) =
α

N
(Si(t)−Si(t−1))×(Sj(t−τij)−Sj(t−τij−1))

(2.13)
under which the learning rule implements a rough approx-
imation of the neurons delayed covariance. In a context
of binary neurons, this rule is found to be balanced, on
the contrary to the simple Hebbian product. This rule
operates on the di�erences of activity and thus enhances
the transmission between neurons whose activity rapidly
switches, and weakens the ones that maintain a stable level
of activity.

A derivative of this rule is the classical �temporal dif-
ference� rule [23] (see equation (1.3) and further), where
the post-synaptic switch enhancement is under the control
of the pre-synaptic neuron.

∆Jij(t) =
α

N
(Si(t)− Si(t− 1))× Sj(t− τij) (2.14)

With the TD rule, the weight is reinforced when Si(t) >
Si(t− 1) (which means that Si(t) = 1 and Si(t− 1) = 0)
and when the PSP7 arrives at time t (according to the
transmission delay τij). The weight is thus enhanced when
the PSP and the post-synaptic action potential exactly
coincidate in time. The weight decreases when Si(t) <
Si(t−1), i.e. when the PSP arrives at time t, shortly after
a spike has been emitted at time t − 1. The TD rule can
thus been interpreted as a re�ned coincidence detection
mechanism.

Another parameter that should be taken into account
in order to balance the simple Hebbian rule is the mean
neuronal activity (or frequency) that we will note mi.
It may correspond to the mean �ring measure mi(t) =
1
t

∑t
k=0 Si(k), or, more practically, to an instantaneous es-

timate of the mean �ring mi(t) = (1−β)Si(t)+βmi(t−1)
with β close to 1. It has been shown in [27] that the use
of the di�erence (Si(t) − mi(t)) may help to implement
direct optimization algorithms with the use of stochastic
neurons. The expression of the rule is the following:

∆Jij(t+ 1) =
α

N
(Si(t)−mi(t))× (Sj(t− τij)) (2.15)

This rule can be seen as a regulation of the simple Heb-
bian rule as it only potentiates (or depresses) the neurons
whose activity is susceptible to undergo signi�cant change

7 Post Synaptic Potential

in their response. On the contrary to the direct di�er-
ence rules, this rule tends to favor the transitions taking
place at the level of the global organization (to identify
the changes in the repartion between active and inactive
neurons for instance). The synaptic enhancement is sup-
posed to activate when signi�cant transitions take place
in the relationship between the neurons.

At last, we must take in consideration the covariance
rule [32] which roots on a �ne estimation of the covariance
between the pre-synaptic and the post-synaptic neuron:

Jij(t) = Jij(t−1)+
α

N
(Si(t)−mi(t))×(Sj(t−1)−mj(t−1))

(2.16)
Some qualitative e�ects of the Hebb rules have been

presented in paper 1, part 6.5, and some other will be
presented further.

The biological relevance of the Hebbian rule has long
been conjectural since the �rst observation of a potentia-
tion mechanism based on the co-activation of pre-synaptic
and post-synaptic neurons [33]. The lasting potentiation
of the synapse is commonly called "Long Term Poten-
tiation" (LTP), and the reverse "Long Term Depression"
(LTD). More recent observations have shown that the tim-
ing of spike arrivals may be of critical importance in the
mechanism of synaptic potentiation [34,35]. This mech-
anism has been called Spike-Time Dependent Plasticity
(STDP). The STDP can be seen as a coincidence detection
mechanism whose precision may be of the order of few mil-
liseconds. The main e�ect of a STDP rule is to potentiate
the sequential co-activation : the EPSP that anticipates
the arrival of a spike on the post-synaptic neurons lead
to a synaptic potentiation. The EPSP taking place sev-
eral milliseconds after spike emission leads to a synaptic
depression.

A classical expression of the STDP rule is the following
[36]:

∆Jij(t+ 1) =
{
A+ exp(∆t/τ+) if ∆t < 0
−A− exp(−∆t/τ−) if ∆t > 0 (2.17)

where ∆t is the temporal di�erence between the time of
PSP arrival and the time of spike emission, A+ and τ+
calibrate the LTP, A− and τ− calibrate the LTD.

In accordance with the integrate and �re model (equa-
tion (2.6)), we show here that the STDP rule can be imple-
mented using local indicators, i.e. without explicitly stor-
ing the temporal di�erence ∆t between pre-synaptic and
post-synaptic spike. For that, we locally store for each neu-
ron a vector m which memorizes the history of recent spike
emissions, with the uni�ed decay parameter γ = 1− T/κ,
where T is the sampling resolution and κ is the time con-
stant of the neuron. In the framework of integrate and
�re neurons, the STDP rule may be implemented in the
following way :{
mi(t) = (1− γ)Si(t− 1) + γmi(t− 1)
∆Jij(t) = α

N (mj(t− τij + 1)× Si(t)−mi(t)× Sj(t− τij))
(2.18)
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Fig. 2.1. The left �gure gives the time evolution of indi-
cators mi and mj according to a random pre-synaptic and
post-synaptic spike train. The resulting weight reinforcement
∆Jij is on the lower plot. The right �gure gives the value
of the weight reinforcement according to the temporal di�er-
ence between pre-synaptic arrival and post-synaptic �ring, i.e.
∆tij =

P100
t=1 t(δ(Sj(t − τij) − δ(Si(t))) in the particular case

τij = 1.

Now, taking γ = 0, the STDP rule simpli�es as fol-
lows :

∆Jij(t) =
α

N
(Si(t)− Si(t− 1))× Sj(t− τij) (2.19)

It can be noticed that the close functional equivalence
between the TD rule and the STDP rule has been noticed
in [12]. Under the hypothesis of a sampling T = 10 ms,
the TD rule is thus seen as a low-resolution approximation
of the STDP rule, but it should be functionally equivalent.
The TD rule may thus be applied in replacement of the
STDP rule in a McCulloch and Pitts model under the
hypothesis that the sampling is of the order of the neuron
potential relaxation (κ ' T ' 10 ms).

2.3 Networks construction

Every particular synaptic weight, every activation thresh-
old and every delay is a parameter for the system. In the
design of large networks, those parameters can not be �xed
by hand, and some global parameters have to be set in
order to describe the average strength and shape of the
couplings between groups of neurons. Those global pa-
rameters (also called macroscopic parameters - see paper
1) may for instance describe the distributions of weights,
thresholds and delays.

In the design process of elaborate networks, it is inter-
esting to minimize the set of global parameters in order to
keep the global description as generic as possible, allow-
ing several concrete implementations of the same scheme
(with di�erent spatial and temporal resolutions).

It seems for instance interesting not to allow the net-
work size N to belong to the global parameters. With a
proper de�nition of the weights distribution, the dynami-
cal behavior should be independent of the size.

A relevant macroscopic parameter for weights de�ni-
tion is for instance the distribution of the sum of the a�er-
ent weights Ji =

∑N
j=1 Jij , which is independent of N (a

Gaussian distribution is taken most of the time). Knowing

the distribution of the Ji's, the distribution of the Jij 's can
then be �xed with respect to the Ji's mean and standard
deviation.

In the most simple case, if we suppose that the dis-
tribution of the Ji's is N (J̄ , σ2

J), we can take for individ-

ual weights setting any distribution whose mean is J̄
N and

whose standard deviation is σJ√
N

(see also paper 1, part

6.1). Those settings have been justi�ed in the previous
papers in terms of local �eld scaling in order to allow the
calculation of their large size limit. It can also be con-
sidered as an o�-line realization of the synaptic scaling
principle [31].

With respect to the global law N (J̄ , σ2
J), some re�ne-

ments can be introduced in order to get closer to biological
plausibility : weights sparsity, weights sign speci�cation
and non-homogeneous delays.

2.3.1 Weights sparsity

In order to build the more generic models, we wish the
weights sparsity ρ not to belong to the macroscopic pa-
rameters! This means that the qualitative behavior of a
particular network realization should be the same what-
ever the connectivity pattern is sparse or not. The follow-
ing individual weights settings are designed in order to
maintain the distribution of the Ji's in accordance with
N (J̄ , σ2

J). We propose to de�ne the sparsity with the help
of a binomial law B(ρ): the probability of a connexion
between neuron i and neuron j is ρ. In that case, the
mean number of a�erent weights is ρN , so that the mean

of the nonzero weights is J̄
ρN and the standard deviation

of the nonzero weights is σ∗√
ρN

, where σ∗ is de�ned such

that var(Jij) = σ2
J

N = ρ(1 − ρ)
(

J̄
ρN

)2

+ ρ
(

σ∗√
ρN

)2

, i.e.

σ∗2 = σ2
J −

1−ρ
ρ

J̄2

N . In that case, N has a lower bound

which is 1−ρ
ρ

(
J̄
σJ

)2

. The value d = J̄
σJ

is the eccentricity of

the Ji's distribution (the relative shift toward positive or
negative values). When the eccentricity is not zero, there
is a minimum number of neurons in the network for the
sum of the a�erent weights to attain the mean J̄ . When
N = 1−ρ

ρ d2, the nonzero weights are constant and the

variance between the Ji's comes from the di�erence in the
number of a�erent links from neuron to neuron.

2.3.2 The design of excitatory (vs. inhibitory) populations
of neurons

In order to design strictly excitatory or inhibitory popula-
tions of neurons, we need to use bounded distributions and
certify that the individual links distribution lower bound
is 0. In particular, the individual weights can not be de-
�ned according to a Normal law. We nevertheless persist
here in trying to maintain the distribution of the Ji's in ac-
cordance with N (J̄ , σ2

J)! The most simple bounded distri-
butions are thus uniform distributions, which are regular
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enough for the sum of several random variable to rapidly
approach a gaussian distribution (according to the law of
large numbers). We note U(m,σ2) the uniform distribu-

tion within interval [m −
√

3σ,m +
√

3σ]. We make the
hypothesis that the individual weights are drawn accord-

ing to U
(

J̄
ρ∗N ,

σ∗2

ρ∗N

)
× B (ρ∗) where σ∗ and ρ∗ are such

that the Jij 's lower bound is 0. In case J̄ > 0 for instance,

we have to certify that J̄
ρ∗N ≥

√
3

ρ∗N σ
∗, i.e. σ∗2 ≤ J̄2

3ρ∗N .

If we �x 0 as the lower bound, then σ∗2 = J̄2

3ρ∗N . Knowing

that σ∗2 = ρ∗Nσ2
J−(1−ρ∗)J̄2

ρ∗N (see previous paragraph), we

�nd

ρ∗ =
4J̄2

3(Nσ2
J + J̄2)

i.e. ρ∗ is O
(

1
N

)
. We �nd that the number of a�erent

weights

ρ∗N =
4J̄2

3
(
σ2

J + J̄2

N

) N→∞−→ 4
3
d2

i.e. the network falls in the category of strongly diluted
networks. It can be noticed that a network of that cat-
egory can be de�ned according to only two macroscopic
parameters, for instance J̄ and d. In that model, the ec-
centricity also gives the sparsity of the weights. Reversely,
the weights sparsity gives the eccentricity, and thus the
variability of the repartition of the Ji's according to the
law of large numbers.

2.3.3 Transmission delays parameterization

When the delays are not homogeneous, one has to de�ne
a new global parameter in order to characterize their dis-
tribution. In the following, every delay τij is set according
to τ0 + P(λ) where τ0 is the minimal delay and P is a
Poisson law of parameter λ. The mean transmission delay
is thus τ0+λ. The de�nition of delays thus needs two more
macroscopic parameters: τ0 and λ. For simple unitary de-
lays, τ0 = 1 and λ = 0.

If we consider that a typical transmission delay is 10
ms, we can de�ne the delays distribution according to the
temporal resolution T in the following way : τ0 = 1 and
λ = 10

T−1 , with T ≤ 10 ms.

2.3.4 Remarks

Random networks With the previous settings, the net-
works belong to the category of Random Recurrent Neural
Networks (RRNNs - see paper 2). The connectivity pat-
tern is non-symmetric, so that one can not ensure the con-
vergence of the dynamics towards a �xed point (see paper
1, part 5.2). Random recurrent neural networks (RRNN)
have been introduced by Amari [2] in a study of their large
size properties. Predictions on the mean �eld of such sys-
tems can be obtained in the limit of large size under an
hypothesis of independence of the individual signals [37,

38], and under a condition of homogeneity of the law of the
weights in a given population p (i.e the mean �eld equa-
tions are valid in a multi-population model, see paper 2).
Autonomous RRNN's (i.e. ∀t,u(t) = 0) are discrete time
dynamical systems, that can for instance display a generic
quasi-periodicity route to chaos while progressively in-
creasing the gain of a continuous transfer function [39].
All those regimes and their conditions of appearance are
reliably predicted by the mean �eld equations (see paper
2). To our knowledge, no mean �eld rigorous result yet
exists in the case of strongly diluted networks.

Network parameters In the most general framework, the
macroscopic parameters of a class of networks can be de-
scribed by several matrices :

J̄ =

 J̄ (11) ... J̄ (1P )

...
J̄ (P1) ... J̄ (PP )

, σJ =

 σ
(11)
J ... σ

(1P )
J

...

σ
(P1)
J ... σ

(PP )
J

,

θ̄ =

 θ̄(1)

...
θ̄(P )

, σθ =

 σ
(1)
θ
...

σ
(P )
θ

, τ0, λ

Those matrices own the most general description of
a family a random neural networks which can be imple-
mented under various spatial and temporal scales. The
general mean-�eld equations of such models are given in
paper 2 (equation 40).

3 Internal dynamics and bifurcations

The versatility of an agent is the propensity by which
it may undergo transitions/bifurcations in its behavior.
Every cyclic or chaotic attractor the global system may
attain can be seen as a particular functional regime of the
interaction. For an agent, the versatility is a sign of fast
adaptivity and variety in its behaviors.

A versatile agent may undergo two kinds of constraints:

� there is a need for a particular regime to remain stable
under various distractions;

� there is a need for the di�erent regimes to alternate in
order to �t with environmental constraints.

There is thus an trade-o� between the necessity to sta-
bilize some behaviors, and the necessity to switch behav-
ior when the environmental contexts requires it (Stabil-
ity/Plasticity dilemma, see [40]).

We are here interested in the way some bifurcations
may be obtained inside the dynamics of a network under
the e�ect of some "control parameter". There are two ways
by which we can identify the control parameter that may
cause such bifurcations.

� The �rst way is to identify the control parameter with
the incoming command uin(t) in equation (1.1).

� The second way is to de�ne a speci�c adaptation pro-
cess by which the transition function f is submitted to
a parametric change.
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3.1 Networks under external in�uence

In the most general framework, a network which is sub-
mitted to an external in�uence is a non-autonomous dy-
namical system.

dxin

dt
= f(xin,uin)

where xin is the internal state and uin is the external
signal (also called "stimulus"), having its own evolution.

We suppose that the external signal uin is continuously
in�uencing the internal dynamics. We assume in particular
that :

� No hypothesis is made on the stationarity or repeata-
bility of the input signal. The dynamics of the system
is not supposed to properly converge toward a partic-
ular attractor.

� The initial conditions of the dynamic system have no
long term e�ect on the dynamics, which can be dis-
rupted and re-routed under the in�uence of the stim-
uli.

� Under some conditions of non-reversibility (i.e. "break-
ing of symmetry"), signi�cant environmental �uctua-
tion are needed for the system to go back to a previous
con�guration, or to reach a new con�guration.

Under these conditions, the system may undergo vari-
ous transitions and explore various attraction basins in its
input/state space. The transitions between those attrac-
tion basins may be expressed in terms of changes in the
shape and structure of the trajectories.

We present here some of the models whose dynamics
is interesting in terms of pattern formation under external
in�uence.

3.1.1 Neural Field models

Retention is the property, for a dynamical system, to store
in its states some information relating to its environment
(it is a form of memory). It can be observed, for instance,
in every system displaying hysteresis and/or multistabil-
ity properties, such as cellular membranes, ferromagnetic
systems, turbulent �ows. The arising of a transition mod-
i�es for a given time the properties of the response of
the system. It can be interpreted as a short term mem-
ory (about the environment and/or about the bifurcation
having taken place in the system).

Topologically structured dynamical systems as models
of short term memory have been introduced in neuronal
modeling with the Neural Field of Amari [41]. This model
approximates the neuron indexes (corresponding to a po-
sition in the map) as a continuous dimension. The original
equation is the following (compare with (2.3)):

κ
dVi(t)
dt

= −Vi(t) + ui(t)− θ +
∫

`∈R
w(i− `)f (Vi−`(t)) d`

(3.1)
where i is a (continuous) index of position, Vi is a po-
tential, ui is an input, θ is an activation threshold, w is

an interaction kernel, and f is the activation function.
The parameter setting is mainly focused on the interac-
tion kernel w, which is a function of distance `. The choice
of a "Mexican hat" (Derivative of Gaussian - DOG) shape
function corresponds to a short range excitation and long
range inhibition8. Under those settings, the system rep-
resents a prototypic model of short term memory. When
no stimulation is sent, the system remains quiescent (the
activity is uniformly equal to a "resting" activity). When
stimulated by the input signal at a given location, and
for a certain time, the system displays a peak of activity
in the vicinity of the stimulation, and this strong activity
is stable and persistent even when the stimulus is with-
drawn. This retention of dynamic activity relies on a sta-
ble equilibrium between excitation and inhibition trends.
The location of the peak is not constrained (every map
location is susceptible to develop a peak), and the num-
ber of simultaneous peaks at a given time is dependent on
the range of inhibition. This system also displays a tar-
get tracking property, when the stimulus is moving in the
�eld, and property of resetting when a stimulation occurs
in a vicinity of an active peak, or when one sends a �ash
of activity in the whole �eld (external resetting). For their
simplicity and robustness, such maps have a wide range
of applications in robotics and control [43,16,44].

Apart from engineering applications, an important in-
terest has emerged about topologically organized models
of short term memory in the cortex since the experiment
of Funahashi et al. [45]. Some studies have established
the links between biology and neural map type models,
interpreted as a mean-�eld approximation of neuronal ac-
tivity[46,47], and pointed out some interesting properties
relating to the adaptive sharpening where the input orien-
tation is weakly contrasted. This model has also been im-
plemented with biologically plausible neurons, where the
same soft tuning property is established [48]. However, the
property of retention is not explicitly established in those
models. In parallel, other authors implemented a di�er-
ent kind of neural map as a model of short term memory,
where retention properties rely on the use of bistable neu-
rons [49]. This model has been extended to the use of
conductance-type neurons with elaborate weight dynam-
ics[50,51], where the stability of the memory properties
rely on the changing of synaptic conductance during the
retention process (gating mechanism with di�erent time
constants depending on the receptor).

3.1.2 Systems with dynamic multistability

Switching behaviors can be obtained in various models
of neural networks. Switching can be obtained classically
through bifurcation under the e�ect of a slow change of
some parameters of the system (control parameters). An-
other way to obtain switching behavior, without explicit
parameter drive, is to de�ne high dimensional systems

8 One can note that Mexican hat kernels have a wide range
of application in Self organizing Maps [42], but self organized
classi�cation systems are not in the scope of this paper.
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where a slow dynamics is coupled with a fast dynamics.
The slow dynamics thus plays the role of a parametric
drive over the fast dynamics. The next paragraphs give
some examples.

Route to chaos in recurrent models In large recurrent
neural networks with random connectivity and continu-
ous activation (equation (2.7)), a generic route to chaos
by quasi-periodicity can be observed (see also paper 1 -
part 6) with the quasi-stationary increase of the control
parameter g (see �gure 3.1). Every transition, from �xed
point to cycle, T2 torus, frequency locking and chaos mod-
i�es the behavior of the system by steps, from order (�xed
point) to strong disorder (deep chaos).

Fig. 3.1. Generic quasi periodicity route to chaos in contin-
uous random network. The gain parameter g slowly increases
from left to right.

Switching behavior with quasi-stationary inputs A re-
current model under external drive can be modeled in the
following way:

x(t) = f(Jx(t− 1) + u(t− 1), θ, g) (3.2)

where g is given and the drive u(t) is almost stationary.
This drive can be for instance a random pattern whose val-
ues slowly and linearly evolve from random pattern P(1) to
random pattern P(2) as time goes on. Figure 3.2 presents
some aspects of the evolution of such a network under the
e�ect of a slow external drive during 10000 time steps. It
clearly appears that such dynamics also evolves by steps,
despite the input evolution is continuous. Some temporary
attractors get stabilized for a while, then undergo some de-
formations, and �nally vanish and get replaced by other
attractors with di�erent shape and intrinsic periodicity.

Fig. 3.2. System multistability under quasi-stationnary ex-
ternal drive. The upper �gure gives the evolution of the mean
activity. The lower �gure gives the intrinsic period of the sys-
tem over 500 time steps sliding windows. This �gure is taken
from [52].

Models with explicit pattern storage In neural network
models with explicit pattern storage, the weights of the
network are a function of a series ofK prototypesP(1), ...,P(K)

and the weights are �xed according to the o�-line Hebbian
rule (see also paper 1, part 5.2)

J =
1
K

K∑
k=1

(P(k) − 0.5)(P(k)T
− 0.5) (3.3)

This idea is for instance found in Hop�eld original paper
[3]. Hop�eld model displays a �xed-point dynamics so that
the long-term state of the network strictly depends on the
initial condition.

Using the same auto-associative weights settings, Adachi
and Aihara [53] use a chaotic neuronal model. The indi-
vidual neurons locally display chaotic behavior (accord-
ing to a logistic map), and the global network dynamics is
driven by the sum of the local dynamics. In such networks,
a macroscopic switching behavior is obtained, where the
various prototypes appear successively in an unpredictable
manner as time goes on.

Models with intrinsic random drive (stochastic dynam-
ical systems) can also display such switching behaviors.
Tsuda's models [54] display spontaneous transitions be-
tween "attractor ruins". The global dynamics is quali�ed
as "chaotic itinerancy".

Recurrent systems with delayed lines are also known to
favor the formation of "itinerant", sometimes chaotic dy-
namics, within systems storing spatial or spatio-temporal
patterns as limit-cycle attractors[55�57].

Transitions from chaos to synchrony The property of
synchronization has been extensively established as a rather
common phenomenon taking place in various models of
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ARNNs [58�60,48,61], from binary models [58] to elabo-
rate stochastic and sparsely connected integrate and �re
models [60].

Synchronous behaviors can be observed in networks
owning at least two populations of neurons, one popula-
tion being excitatory, the other one being inhibitory. This
basic network structure is a �rst step toward biological
plausibility, where structures owning cooperating popula-
tions of excitators and inhibitors are broadly found. As
stated in section 2.3.2, such a network can be de�ned
with very few parameters, namely d (eccentricity) and

k (coupling parameter), i.e. J̄ = 1
2

(
1 −k
k −1

)
and σJ =

1
2d

(
1
√
k√

k 1

)
. In such networks, population 1 is the exci-

tatory one and population 2 is the inhibitory one. Those
settings are inspired by the "neural oscillator" scheme (see
paper 1, �gure 25), except that the self feeding of the
inhibitory population is inhibitory. See also the settings
of paper 2, equation 41 for another example of excita-
tory/inhibitory interaction scheme. In the present case,
the interactions between populations are stronger than
the interactions within populations, by a factor k (cou-
pling factor), and the mean number of links between pop-
ulations is k times the mean number of links within a
population.

Figure 3.3 presents a transition occurring in this kind
of network where the control parameter is a macroscopic
one : the eccentricity d. For k = 5.5, and d varying between
1.2 and 1.8, a transition from unsynchronized chaos to
synchronized chaos can be observed. The property of syn-
chronization is not a speci�city of that particular network.
Those behaviors are theoretically tractable at the limit of
large sizes [62,63]. The period of oscillation linearly de-
pends on the range of the delays [60], which is also the case
in our model. In deterministic systems, one can also ob-
tain under di�erent parameter sets chaotic regimes (with-
out synchronization) [64] or either synchronized chaos [48]
or cyclostationary chaos [65] (see also paper 2). More gen-
erally, synchronizing behaviors in unitary delays networks
depend on the coupling factor k, i.e. inhibition has to dom-
inate excitation on the excitatory layer for the network
to produce synchrony. This point has been overlooked in
other simulation works, see for instance [66,67].

3.2 Learning and dynamics

Learning generically refers to the slow process by which a
neural network modi�es its own structure under the in�u-
ence of environmental pressure.

We have just seen in previous section that a slow pro-
cess coupled with a fast one is susceptible to produce bifur-
cations and transitions. The study of learning in dynam-
ical neural networks corresponds in a �rst place to the
study of the bifurcations taking place under the in�uence
of a process of weight adaptation.

The most popular learning rules have been presented
in section 2.2. Let us now see how such rules may interfere
with the dynamics of various networks.

- a -

- b - - c -

Fig. 3.3. - a - Return maps of the mean activity of the exci-
tatory layer, for networks whose eccentricity d vary from 1.2
to 1.8, with coupling k = 5.5 - b - Activity of the excitatory
layer, with d = 1.2. The mean activity is on the lower part of
the �gure. - c - Activity of the excitatory layer, with d = 1.8.
The mean activity is on the lower part of the �gure, with a
red line showing for comparison the amplitude of the sum of
independent activities.

3.2.1 Transitions from chaos to cycle or �xed point

In the simple continuous random network (2.7), it has
been shown [68] and in paper 1 that a simple Hebbian
process tends to produce, for a �xed value of the gain g,
an inverse quasi-periodicity route. Starting from a chaotic
regime, the simple Hebbian rule drives the dynamics to-
ward �xed point. It has been moreover shown that the ini-
tial Gaussian repartition of the weights is not signi�cantly
modi�ed by this short-time learning process (the weights
remain gaussian and thus strongly non-symmetric).

In a stimulated network (see equation (3.2)), this sort
of learning process makes the network highly reactive in
the vicinity of the static pattern uin(t) = P(1). After
learning, the presentation of every close neighbor of P(1)

drives the dynamics toward a �xed point.

3.2.2 Comparison between the TD rule and a simple
Hebbian rule

Figure 3.4 gives a comparison between simple Hebbian and
TD rule. The experimental setup is the same in the two
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cases : �rst, 3 static random patterns P(1), P(2) and P(3)

are successively presented for periods of 200 time steps.
Then, pattern P(1) is learned for 400 time steps. At last,
The three patterns are presented anew.

Fig. 3.4. Mean activity in a random network of 500 neu-
rons, under the in�uence of 3 static gaussian random patterns
P(1),P(2) and P(3). A learning process is activated between
t = 800 and t = 1200. Upper �gure : Simple Hebbian learn-
ing process (α = 0.001). Lower �gure : TD learning process
(α = 0.05).

The two rules induce changes in the state/input dy-
namics, but they operate in an opposite manner. The sim-
ple Hebbian rule tends to extinct the dynamics, giving rise
to small limit cycles or �xed points, while the TD rule
(equation (2.14)) tends to amplify the variations taking
place in the dynamics, giving rise to large amplitude limit
cycles. In the two cases however, the dynamics tends to
simplify, from disorder to order.

The long term application of those rules has a strong
e�ect on the reactivity of the system. In the �rst case, the
dynamics converges toward a �xed point, in the second
case to a cycle with a high level of activity (of the order
of 0.5), but most of all in the two cases, the response of
the system becomes stereotypic, i.e. any input pattern will
lead the system to the same response.

3.2.3 Transitions from asynchrony to synchrony

Starting from asynchronous chaos, like in �gure 3.3 - b -,
a speci�c learning process can also produce an increase of
the synchrony. This learning process has been designed in
order to favor the �rst spike of a neuron after signi�cant
decrease of the neuron potential. Namely, given the cou-
pling factor k, a given neuron i is allowed to learn if its
potential has reached the negative value −0.2k. Its "to-
ken" Ti is thus set to 1. The neuron is allowed to learn as
soon as it has emitted a spike. Then, the token is set to 0
until the potential reaches the negative threshold anew.

Fig. 3.5. Application of a TD rule with token in a network
of 1000 neurons, with α = 1. A pattern is presented at time
t = 100 and the learning process is activated until t = 500.
After learning, the network reaction is signi�cantly synchro-
nized when the known pattern is presented. The right �gures
give the repartition of the weights di�erences for every class of
links.


∆Jij(t) = αTi(t−1)

ρ∗N (Si(t)− Si(t− 1))Sj(t− 1)

Ti(t) =

1 if Vi(t) < −0.2k
0 if Si(t) < Si(t− 1)
Ti(t− 1) elsewhere

(3.4)

An example is given �gure 3.5. Under those settings, the
synchrony of the neurons signi�cantly increases, but no
drift of the neurons activity is observed.

3.2.4 Hebb and anti-Hebb rules

The use of a negative α gives a "anti-Hebb" rule, i.e. a
rule which inverts Hebb's principle. A anti-Hebb rule thus
favors the transmissions between neurons which are not
correlated (and diminishing the transmission between cor-
related neurons). The alternation between Hebb and anti-
Hebb rules thus allows to control the degree of disorder.
As Hebb rules favors order, anti-Hebb rules favors the dis-
order and drives the system toward more chaotic and less
synchronized regimes.

Figure 3.6 illustrates the mirror e�ect of the successive
application of Hebb and anti-Hebb rule on a network. As
the Hebb rule increases the synchrony, the anti-Hebb rule
diminishes the synchrony in a symmetrical fashion.

3.3 Transitions in biology

In biology, the development and improvement of global
non-invasive techniques has enriched the knowledge of the
dynamics and transitions in neuronal activity. In particu-
lar, the property of synchronization has been extensively
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Fig. 3.6. Application of a TD and anti-TD rule with token in
a network of 1000 neurons, with α = 1. This �gure only shows
the mean activity. The TD rule is applied between t = 200
and t = 500. The anti-TD rule is applied between t = 500 and
t = 800.

observed within local assemblies [69] or between di�erent
assemblies [14]. Such synchronization may express the in-
volvement of a particular area in a process taking place
at the global level, and thus express the cooperation be-
tween the local and the global level. Some authors have
also stressed the role of desynchronization following syn-
chronization [14]. According to them, the important fact is
the transient nature of the synchronization processes, and
the fast adaptivity of the system in permanently switch-
ing from one con�guration to the other. The presence of
intermittencies in the dynamics of interaction seems to be
a crucial point in the adaptivity of living animals.

Some remarks follow:

� From now on, there is no convincing implementation of
synchronization processes for the design and control of
arti�cial devices. The tuning of an e�cient control sys-
tem owning several regimes from chaos to synchrony is
still a matter of projects and expectations. Its realiza-
tion in realistic and plausible systems could constitute
a breakthrough in the modeling and understanding of
intrinsic brain dynamics.

� The question of endogenous desynchronization has not
been, to our knowledge, a matter of speci�c interest,
but the close question of the natural resetting of a
recurrent short term memory model is tackled, for in-
stance, in [70].

4 Identi�cation models

We have seen in the previous section that the Hebbian
adaptation processes drive the neuronal dynamics toward
phase transitions and bifurcations. In particular, starting
from disordered regimes, Hebbian-inspired weight-adaptation
processes tend to reduce the complexity.

One can now ask whether such transitions may take
place in the more general framework of the coupling of an
agent with an environment.

We have seen in section 1.2 that two principal strate-
gies may be used in the design and modeling of interacting
agents.

� In the �rst one, agents own internal models of their
environment through which they can �lter and �ll in
noisy/ambiguous incoming patterns, and the stabiliza-
tion of the action relies on the identi�cation of well-
known sensori-motor situation. Those situations may
previously be learned with the help of a teacher (su-
pervised learning protocol).

� In the second one, the process of movement produc-
tion relies on an exploration process (trials and er-
rors) through which the agent learns to produce the
most appropriate action under its experience of previ-
ously encountered situations and associated rewards.
There is no need of an explicit internal model : the ac-
tion comes out of the internal self-generated dynamics,
whatever shape it may have.

We present in this section the principles by which re-
current neural networks may learn to identify their en-
vironment through plausible weight adaptation processes.
An e�cient identi�er may own some of the following prop-
erties :

� memory of past states (non-Markovian environments)
� ability to stabilize a response
� resistance to noise and distortion
� hidden variables and states completion
� spatio-temporal patterns identi�cation

The question we address is the following : in which fashion
does the principle of transition from disordered phases to
ordered ones relate to the process of internal model con-
struction, and which of the listed properties may it imple-
ment?

4.1 Principles for identi�cation within the
agent/environment interaction system

The choice of interaction system framework implies some
constraints which relate to the question of the global dy-
namics description. The coupling of the environment and
the internal dynamics gives rise to a global system (equa-
tion (1.1)) which may display various regimes, attraction
basins and reaction times. The problem is that most of
the time, one can not properly identify state variables,
and thus precisely describe the trajectories and transitions
taking place in the system.

At a schematic level, one can however give the follow-
ing path :

� the �order� may relate to the transitions where the
internal and the external processes get synchronized.
In that case, the two processes are strongly coupled
and easily penetrated by the other's in�uence.
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� the �disorder� may relate to the situation where the
two processes remain blind to the other's in�uence.
They tend to produce, for instance, a chaotic pattern
of interaction.

4.1.1 Coupling

can we measure whether the two sub-systems cooperate
or, on the contrary, ignore each other? This question re-
lates to the question of the coupling, or matching, between
the two sub-processes. Such matching may be measured
by the way the two sub-processes display common fea-
tures in their state space, like periodicity, synchrony. The
measure of the coupling between the two dynamics may
empirically rely on a comparison between the embedding
dimension of the global trajectory D, and the embedding
dimensions of every local trajectory Din and Dout. This
point will not be developed in this paper. See for instance
[71].

4.1.2 Relaxation time and action selection

How does a particular structure "take the decision" to par-
ticipate to the global process? This relates to the question
of action selection and decision processes. In a global sys-
tem, one can not say that a certain decision is strictly
taken "inside" the agent. One should better say that the
environment facilitates a certain series of interaction pat-
terns, and reciprocally the agent facilitates a certain series
of interaction patterns, and the decision relies on a mutual
process of convergence toward a compromise.

This time necessary to �take the decision� is the relax-
ation time of the global system. This means in particular
that the response of the system is not instantaneous, but
it may take a while before the system �makes up its mind�.

4.1.3 Teacher forcing

In the following experiments, local and unsupervised learn-
ing methods are combined with supervised �instructions�
consisting in a series of perception or perception/action
patterns. This method, called "Teacher forcing", is used
for instance in [72]. The patterns are sent and maintained
on the system, and interact with the internal self-sustained
dynamics in real time. When the learning process is acti-
vated, it participates to the reinforcement of the coupling
between the external pattern and the internal dynamics.
Its e�ect may vary from one experiment to the other. As
the external drive is set regular (periodic for instance),
the learning process is mainly supposed to increase the
regularity inside the system.

This internal increase of regularity will �nally change
the responses of the system. After learning, the predictabil-
ity of the agent's trajectories depend on the matching be-
tween the sensori-motor prototype and the encountered
situations.

4.1.4 Active/Passive perception

Learning in a dynamical system may allow to model per-
ception processes at a very general level. We consider per-
ception as the dual ability:

� to dissociate the compliant part from the �unknown�
(nonsense) part in the sensory �ow. According to Free-
man Hypothesis [5], the more the situation is well-
known, the more regular is the dynamics. On the con-
trary, unknown situations tend to produce disordered
and chaotic responses.

� to associate the compliant part of the signal with an
active sensori-motor scheme. The compliant signals are
indeed supposed to trigger some mechanisms which
may produce some functional responses or behaviors.
On the contrary, disordered regimes may maintain the
system in a passive regime.

4.2 Perception and resonant memory

We give here a simple model of perception, composed of
two interacting layers. It has been designed in order to
testify that an e�cient pattern completion mechanism can
be obtained out of an on-line Hebbian process.

The principle of pattern-completion is inspired from
the classical auto-associative memories [3,73]. The prin-
ciple of auto-associative memories is to use the reverber-
ant mechanisms taking place in recurrent systems to re-
construct the missing information (pattern retrieval prop-
erty). A �xed number of prototypes can be learned, and
the relaxation of the dynamics classi�es every input pat-
tern in one of the learned prototypes family. Such systems
however learn o�-line, have low capacities and do not dis-
tinguish the known from the unknown, and always give a
response, which may be inappropriate.

The architecture we propose is a generic sensory struc-
ture with global analogy with auditory, visual or olfactory
structures. The �rst layer (primary layer) is directly un-
der the in�uence of a sensory signal u(1). This layer is
connected to a �secondary� layer, which serves as deeper
�processing� layer. The secondary layer has no direct sen-
sory signal, and owns numerous recurrent links, so that it
can maintain a self-sustained activity (see �gure 4.1). The
input signal u(1) is composed of several patterns which ac-
tivate about 5% of the primary layer neurons. Three fami-
lies of links are de�ned : the feed forward links J(21) which
propagate the primary signal toward the secondary layer,
the �internal links� J(22) which propagate the internal dy-
namics, and the �feedback� links, which send back the sec-
ondary layer activity toward the primary layer (they carry
the �feedback signal�).

The given system can be de�ned with very few param-
eters, namely

J̄ = 0, σJ =
(

0 0
1 1

)
, θ̄ =

(
0.5
0.4

)
, σθ = 0, g = 8

In such a system, the focus is on the feedback links,
which are expected to play the main role in the process
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Fig. 4.1. Perceptive model. The model is composed of two
layers of di�erent sizes. The primary layer receives a spatio-
temporal signal u(1). The secondary layer has no input signal.
The links are monodirectional. The secondary layer activity is
often chaotic. the primary layer activity is both dependent on
the primary signal and the feedback signal coming from the
secondary layer.

of pattern completion. Their role is to extract out of the
secondary layer some regularities which will synchronize
with the current input signal. The feedback learning pro-
cess starts from a blank sheet and the response progres-
sively emerges from the coupled activity of the primary
and secondary layers. Moreover, a light learning process
also takes place on the internal links, which reinforces the
internal regularities and stabilizes the system's response.
Out of several simulation tests, we found out that the best
rate between internal and feedback learning parameter is
1/5, which gives the following learning parameters :

α =
(

0 0.1
0 0.02

)
The layer spontaneous dynamics is given by (2.7) and the
learning process is order 1 covariance Hebb rule, see [32].
The primary layer is continuously stimulated. The sec-
ondary layer activity is initially chaotic and non-synchro-
nized. At a given time, about 15% of the secondary layer
neurons are active.

In our experiment (see �gure 4.2), we use two periodic
animated sequences. Each sequence is composed of k im-
ages of 1600 pixels, where k is the period of the sequence.
The �rst animated sequence represents here a frog jump,
of period 5. The second animated sequence represents a
�ying bird, of period 7. The choice of a visually signi�cant
pattern is set to improve the readability of our �gures. The
images are not orthogonal, but they are sparse, and have
thus few pixels in common.

The given simulation is done on 800 time steps. The
�rst 600 steps are devoted to the learning of sequence 1
(frog). The steps 601 to 800 test the reactivity of the sys-
tem : we successively present a unknown stimulus (time
601-700) and a then a partially known one (time 701-800).
The learning mechanism has to be read out of several indi-
cators. The main indicator of the network reactivity is the
amplitude and shape of the feedback signal. The feedback
signal is

h(12) = J(12)(t− 1)x(2)(t− 1)

and the impact of h(12) is measured by F(t) = f(h(12), θ(1), g)
which displays the e�ective in�uence of the feedback signal
in a practical way.

The working mechanism of pattern recognition and
completion relies on the reverberation between layer 1 and

Fig. 4.2. Learning dynamics in a resonant model of perception
(see text).

layer 2, which is coupled with a light process of regular-
ization taking place on layer 2. If we �rst consider the
activity of layer 2 (�gure 4.2 - a -) during the �rst 600
time steps, we can see that the dynamics becomes more
and more regular as time goes on. This regularizing e�ect
of the learning process is coherent with the previous exper-
iments in various models, see for instance �gure 3.5. Now,
the reverberant mechanism is illustrated by �gure 4.2 -
b -. The �gure is composed of several 40x40 images. Each
line gives �ve steps samples of the time evolution of three
spatio-temporal signals between t = 301 and t = 505,
namely

� The primary input sequence u(t),
� The feedback signal F(t),
� The primary layer activity x(1)(t), which is the sum of

the two previous signals.

Starting from zero, the amplitude of the feedback links
(positive or negative) slowly increases, �nally giving rise
to a sustained feedback signal. Up to t = 300, the feedback
signal remains very weak. From t = 400, the feedback sig-
nal becomes strong enough to have e�ect on the primary
neurons activity. This signal gets reinforced until t = 600
(input change). During this learning phase, the secondary
signal is correlated in space and time with the primary
signal (a �copy� of the incoming signal is produced out of
the secondary layer activity). The system has entered in
a resonant mode where the feedback signal is as strong
as the primary signal, possibly modifying or enriching the
observation vector.

The testing phase is displayed on �gures 4.2 - c - and
4.2 - d -. At t = 601, the bird sequence is presented for 100
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time steps (which is not enough for the learning process
to leave a signi�cant imprint). Figure 4.2� a � displays
the transition taking place in the internal dynamics. Be-
tween t = 601 and t = 700, the secondary layer activity is
strongly modi�ed, globally weaker and more disordered.
The �gure 4.2� c � gives the �rst layer primary and feed-
back signals, between t = 598 et t = 617. It illustrates
the relaxation time of the transition, of the order of 15
time steps, which is necessary for the system to switch
from the resonant mode to the disordered one. The prin-
cipal observation is the mismatch (and concurrence) on
primary layer between the primary and feedback signals.
The feedback signal does not �t any more with the incom-
ing signal. After a while, the feedback signal extincts for
it is no more fed by the secondary layer dynamics. The
persistence of the feedback signal during about 10 time
steps illustrates the stability of the learned answer : only
the repetition of feedback error on several time steps al-
lows for the dynamics to change and a new regime to be
attained.

Finally, at t = 701, a meaningful sensory signal is pre-
sented, composed of the two �rst images of the learned
sequence, followed by a three steps blank input (the whole
signal being repeated, giving a period 5 stimulation). Fig-
ure 4.2� a � shows that the internal layer recovers its ini-
tial activity, with (almost) the same internal activation
patterns. Even di�erent from the learned sequence, this
sequence is perceived as coherent with the imprinted se-
quence. This gives rise to a similar attractor which �nally
participates to the completion of the missing part of the
signal. Figure 4.2� d � gives a zoom on the transition. The
feedback signal is progressively enhanced until the full se-
quence can be recalled on the primary layer. At last, the
system behaves �as if� the full sequence was present.

This simulation gives some insights on the intrinsic
melting between perception and memory recall. An elu-
sive signal with partial correspondence with a past exper-
iment resonates with the internal dynamics, which �nally
fully evokes the past experiment. The presented model,
even rough and simple in comparison with the real brain,
suggests that memory recall and direct perception rely
on the same mechanism, and are thus intimately linked.
Under this approach, a perception system only perceives
what it has been prepared to perceive. The perception is
active, as the internal self-sustained activity permanently
�simulates� its current environment, and this simulation
is successively consonant or dissonant with the incoming
signal. The system is able to perceive well what it has
been prepared to perceive, in accordance with its internal
model, this model being progressively constructed through
its experiment.

5 Control models

We have seen previous sections that knowledge/skill ac-
quisition/recall is often associated with a reduction of the
dynamics complexity, taking place at the level of the neu-
rons activity and/or at the behavioral level. Apart from
uncertainty reduction, learning and evolution processes

are also supposed to be oriented toward a better access to
the sources of nutriments and a better protection against
environment hazards. This point is more delicate to tackle
under a dynamical systems approach. It is the core of
the embodied approach. Under that approach, an agent
identi�es with its body, and the cognitive activity identi-
�es with the continuous trade-o� between the dynamics
of self-construction and the body/environment structural
couplings [74].

5.1 Coupling with environment dynamics

The previous simulations have shown that perception is
rooted on memory. We see now how the given princi-
ples (dynamics reduction, resonance, active vs. passive
behaviors) can be extended to the more general case of
movement production. The following experiment is de-
signed in order to study an explicit coupling between the
internal dynamics and the body/environment dynamics
(also called behavioral dynamics). The signal uin that
comes from the environment is now fully dependent on
the agent's movements. Our experiments are now said to
take place under a "closed loop" approach. A similar study
addressing the question of the dual dynamics between a
recurrent neural network and a robot trajectory can be
found in [72].

5.1.1 A simple sensori-motor system

We present here a system which has many common points
with the previous one: a recurrent secondary layer is cou-
pled with two perceptive layers, the �rst perceptive layer
displays visual signals, the second perceptive layer displays
proprioceptive signals.

In this experiment, a wheeled robot is assigned to learn
some associations between its visual environment and its
movements. The network owns P = 3 populations, i.e. two
primary layer and one secondary layer. The parameters are
the same as in previous experiment. The robot movements
are limited to rotations, from −90◦ to +90◦ by 30◦ steps.
The visual signal is adapted from a pre-visual treatment
(salient points extraction). A periodic movement is sent
on the proprioceptive layer, which corresponds to a loop
composed of three rotations (+30◦,+60◦,+90◦), so that
6 time steps are needed for the robot to resume its initial
visual �eld (see �gure 5.1). The visual signal u(1) is thus
found to have a period of 6.

After a short learning session of 40 time steps, the
accuracy of the robot angular position is checked. The
learning session is not long enough to produce a sustained
feedback signal, but the feedback signal is strong enough
to extract a motor command out of the internal layer since
the motor instructions are removed.

5.1.2 Alternating behavior

During the testing phase the production of movement is
autonomous. The system has thus the �choice� between
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Fig. 5.1. Successive positions of the robot issuing from the 3
motor commands +30◦,+60◦,+90◦. The associations between
salient visual points and their angular position is the visual
input. After 3 steps, the robot has made an half-turn. (issuing
these commands again allows the robot to resume its initial
position).

one of the three possible motor responses: +30◦,+60◦ or
+90◦. This choice is extracted from the feedback signal.
Two typical angular trajectories are given on �gure 5.2.

The robot is placed with an arbitrary initial angular
position. After short transitory, the robot robot locks on a
matching visual scene and maintains its learned periodic
movement according to its previous learning session.

In the �rst experiment (�gure 5.2-a-), the learned se-
quence is reproduced during about 20 time steps (between
t = 3 et t = 24), and then the system unlocks and starts
erratic movements. This discontinuity relates to the un-
expected friction of the wheels, which lead to an under-
estimation of the real rotation. The real angular position
undergoes a slow drift, and the visual �eld undergoes the
same drift. The visual input becomes less and less con-
sistent with the learned sequence. this lasting con�ict be-
tween movement and vision leads to sudden change in the
robot's behavior, i.e. a transition. The robot is indeed un-
able to make instant correction of its angular position :
it is �lost�, and enters a disordered phase, which produces
erratic movements which have no correspondence with the
learned sequences. After those new transients, the robot
rallies a matching position from which it can resume its
periodic behavior. In the second experiment (�gure 5.2 �
b� ), the visual signal is explicitly masked after the robot
has reached its periodic behavior. This change produces
a transition like in previous experiment, with comparable
erratic movements, which persist as soon as the camera is
masked.

These experiments, even simplistic, reveal that phase
transitions can be observed in the behavioral domain.

� The periodic behavior is the active task, which asso-
ciates in a regular way visual and proprioceptive sig-
nals. This behavior is stable on a large scope of the
visual �eld, included strongly drifted visual signals.

� The passive erratic movement is analogous to an ex-
ploratory behavior : the series of motor commands im-
plicitly seek for a matching sequence. When this re-
search can not succeed, the system remains in its er-
ratic phase.

The intermittency between ordered and disordered phases
illustrates the degree of coupling between the internal dy-
namics and the issued movements. A strong coupling be-
tween the internal dynamics and the environment tends

a b

Fig. 5.2. Angular trajectories of the robot as a function of
time. � a � A visual shift gives rise to a transitory phase of
erratic movements (see text). � b � After the robot has reached
his periodic phase, the visual signal is explicitly masked, which
gives rise to an erratic phase (see text).

to produce predictable movements, and a weak coupling
leads to less predictable behaviors. A strong coupling will
reduce the agent's autonomy, while a weak coupling will
increases the agent autonomy according to its environ-
ment.

This experiment also helps to rethink the phenomenon
of memory recall. The memory recall is indeed embedded
in a large process which overtakes the agent. The recall
only takes place when the internal and the external dy-
namics �meet one another�. A joint tendency is needed for
the recall to emerge for the action concretely take place
in the agent's world.

5.2 Learning with rewards

5.2.1 Biologically plausible reward learning

Apart from the classical reinforcement learning paradigms,
which have been presented in section 2, a lot of models
have been proposed for the modeling of biologically plausi-
ble reinforcement processes [75�77]. It is frequently admit-
ted that neurotransmitters release (dopamine, GABA, ...)
can be interpreted as valuations of the current processes
taking place in the brain. Many studies suggest that some
reinforcement mechanism may take place at the level of
the basal ganglia in relation with dopaminergic neurons.
The processes and paths through which neurotransmit-
ters release is achieved are much less known (and at least
as complex and �nely tuned) than the axonal action po-
tential transmission processes. They may participate, for
instance, to the hippocampus memory imprint processes.

A lot of actor-critic models have been proposed in the
recent years, most of which being inconsistent with the
anatomy of the basal ganglia [77]. The main problems
with such "high-level" models is the lack of knowledge
of the real anatomy of the implied structures. It can be
noticed, for instance, that some forms of operant learn-
ing have been shown to take place in simple invertebrate
animals [75]. Reinforcement is suggested to be one of the
most primitive nervous adaptation mechanism, though it
doesn't need any explicit model or consign.

The consequences in modeling are the following:
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� Apart from the activation and learning mechanisms,
there must be an independent reward mechanism which
�xes the moment when a reward is emitted. The mo-
ment of neurotransmitter release must rely on simple
and perceptible environmental clues.

� In the general case, there must be positive and nega-
tive rewards, possibly corresponding to di�erent neuro-
transmitters releases. they can be interpreted in several
ways:
� positive reward may reinforce the activity of the

excitatory neurons while negative rewards may re-
inforce the activity of inhibitory neurons.

� positive reward may correspond to a Hebbian plas-
ticity, while negative rewards may correspond to a
anti-Hebbian plasticity.

� positive or negative rewards may have a restricted
e�ect on some speci�c categories of synapses. Some
synapses may be sensitive to the positive rewards,
other to the negative ones.

� at last, there may be more than only two categories
(positive/negative), but also layer speci�c neuro-
transmitters. This point is not tackled here...

� The value of the rewards may correspond to the amount
of neurotransmitters release.

5.2.2 Reinforcement learning with a recurrent neural
network model

There is still a gap between classical TD and Q-learning
methods and more biologically-relevant approaches of re-
inforcement learning. For that, the simulations of realistic
reward learning processes may be helpful for a better un-
derstanding of the reinforcement processes taking place in
the brain.

The method we use is based on the following approach:

� The movements production and exploratory processes
relies on the self-generated chaotic activity.

� Learning is the selection process through which the
better con�gurations are to be stabilized.

� Learning is based on punctual applications of positive
and negative Hebbian rules. The positive Hebbian rule
relates to positive rewards, the negative Hebbian rules
relate to negative rewards.

The 2-population networks we have described in pre-
vious sections are now combined in order to build a per-
ception/action network. In this implementation, we use a
simple McCulloch and Pitts model composed of a sensory
layer and a movement production layer, each layer owning
distinct local excitatory and inhibitory neurons.

A functional module is composed of 2 populations of
neurons : one excitatory population and one inhibitory
population. The global parameters are the following : J̄ =

1
2

 1 −k 0 0
k −1 1 0
1 0 1 −k
0 0 k −1

, σJ = 1
2d


1
√
k 0 0√

k 1 1 0
1 0 1

√
k

0 0
√
k 1

, θ̄ =

 0.1
0.1k
0.1
0.1k

,

d = 6, k = 4

As previously said, every module can be seen as a
rough approximation of a cortical column. In this exper-
iment, the modules are topologically organized. The con-
nections strength are a function of the distance. A full de-
scription of topologically structured modules can be found
in [78].

The two modules are comparable to the ones described
in paragraph 3.1.2. One can moreover remark that the
sensory module feeds the movement production module,
while the movement production module tends to inhibit its
perception. This choice relates to the hypothesis of tem-
porary blindness during the realization of the movements,
which favors the arrival of new percepts. The "attention"
thus permanently switches from perception to action and
from action to perception (see also paper 4).

Designing a perception-action network also means to
specify the environment through which the system inter-
acts, and also to specify a task. In order to minimize the
environment complexity, our choice is put on a very well
known and documented task : the control of an inverted
pendulum.

The production of action relies on the second module.
The force applied to the pendulum is dependent on the
position of the peak of activity on the module excitatory
layer, taking place between -20 N and +20 N.

Our aim is to validate the mechanism of positive/negative
Hebbian rule alternation. The reinforcement signal relies
on the pendulum velocity: a low velocity (< 0.05 m/s) trig-
gers a positive reward, while a high velocity (> 0.5 m/s)
triggers a negative reward. The network is thus implicitly
assigned to maintain the pendulum velocity as small as
possible. Positive reward activate a positive Hebbian rule
on the excitatory links only, and negative rewards acti-
vate a anti-Hebbian rule on the same links. The Hebbian
rule has been balanced in order to avoid weights drift (see
details in [79]). In accordance with [27], a trace of the
most recent Hebbian terms is stored at the level of the
synapses, but it is not directly imprinted on the weights
(see also equation (1.4)). The arrival of a reward (pos-
itive or negative) activates the imprint mechanism, and
modi�es the weights in proportion with the reward value.
Moreover, the rewards are set to be rare events (sparse
rewards): we only allow a positive reward after a negative
one has been sent, so that the system is sensitive to the
novelty of its situation. The mean reward expectation is
thus of the order of 0.

This principle has been tested on several networks, the
learning is done on-line and the maximal number of time
steps is limited to 1000 (which corresponds to a 5 seconds
control), in order to experience various situations and var-
ious networks. Moreover, the simulation is stopped as soon
as the pendulum angle is too large. The network progress
is measured by the mean control duration. If this mean
duration is close to 1000, the system is found to main-
tain the pendulum in equilibrium for almost every initial
condition.

Figure 5.3 gives the mean control duration as a func-
tion of the number of positive rewards, out of 23 networks
realization and 400 control attempts through the on-line
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Fig. 5.3. Measure of the control capacity of 23 networks for an
inverted pendulum task. The upper �gure gives the evolution of
the control duration for every network. The lower �gure gives
the mean control duration out of the 23 networks as a function
of the number of positive rewards.

learning process. We clearly obtain a strong improvement
of the control capacity for most of the networks and most
of the situations. This capacity is moreover maintained in
the long term without deterioration or saturation (thanks
to the weight drift limitation).

So, what mechanism are e�cient in that case? On the
contrary to standard reinforcement methods, the evalua-
tion and action production processes are intimately linked
(there is no explicit evaluation process). The selection of
a proper action out of several possible responses relies on
the versatility of the system. As the system spontaneously
displays a great variety of responses, the arising of a re-
ward at a given time helps to favor a particular response
out of a set of possible responses. The choice is however
limited, and the behavior of the system is not necessarily
the optimal behavior, but only a viable one. There is no
explicit prediction of the future rewards, but the system
tendency is to learn the best choice for every local situa-
tion; it results in an improvement of its global behavior.

In biological terms, it is shown that an alternation of
Hebbian and anti-Hebbian rules on the excitatory links al-
lows to shape the behavior. It mostly relies on a selective
excitation (or depression) of some neurons of the action
production layer (Central Pattern Generator - CPG -),
giving rise to a more selective response. The question re-
mains wether such Hebbian/anti Hebbian may take place
on real neurons. They may be triggered by the release
of di�erent neurotransmitters for instance dopamin and
serotonin. This numerical experiment is thus a �rst step
toward more realistic and biologically founded models.

Conclusion

This paper has shown that a combination of recurrent
networks with simple Hebbian learning rules can provide
e�cient and biologically plausible mechanisms of knowl-
edge acquisition. Freeman's hypothesis [5] on the role of
phase transition in recognition can be implemented in an
e�cient way. It has been moreover shown that the agent's
behaviors shape under the constraints of their environ-
ment, giving rise to a procedural knowledge which mani-
fests in more regular trajectories. After learning, two sorts
of behaviors can be identi�ed, namely the ordered behav-
iors and the disordered ones. The ordered behaviors may
relate to an active implication of the agent within its en-
vironment, while disordered ones may relate to a more
passive attitude, possibly interpreted as an exploratory
process. The transitions between various behaviors obey
to a principle of locking and unlocking: the agent tends to
persist in its current behavior until the mismatch is "felt"
as unbearable.

Most of the presented mechanisms are found through-
out various models and learning methods, provided that
spike timing is �nely taken into account. The models are
most of the time simple in their realization, and generic
in their capabilities. They would for instance ultimately
unify sequence learning, identi�cation and reinforcement
learning. Even if they do not attain the optimal response,
their versatility may allow for a better adaptivity. This
presentation thus claims for a better account of recurrent
models and local synaptic mechanisms for the modeling
of learning and skill acquisition in biology and control.
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